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What is a “near-term” forecast?

* Climate projections of changes due to increased
greenhouse gases go out to the end of the 21
century!!

* Quick show of hands: who is going to be here then?

* Would be useful to know something about the next 5,
10, 20+ years too.

* Especially useful for adaptation/mitigation
* What we want is a “near-term” forecast



Climate predictions and projections
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See Kirtman et al, 2013: Near-term Climate Change: Projections and Predictability (IPCC chapter 11)



Some key points about climate

* Climate anomalies have large scale (hemispheric to global)
patterns called teleconnections

* Climate signals can be small compared to natural weather
variability, which often looks like (red) noise

* Climate forecasts involve predicting changes in the odds of
different weather events (probability distribution)

* Climate forecasts require an ensemble of individual forecasts,
each run with a small change in atmospheric initial conditions
» Because of chaos (butterfly effect), each forecast will evolve differently

» Each forecast (if model is perfect) is equally likely, but only one wiill
actually occur



What is climate?

Climate is what we expect. Weather is what we get. — Ed Lorenz

* Climate is the average

* Climate is a statistical description of weather (more
general)

* Climate is what can be predicted after about two weeks
» “Butterfly effect” (chaos) limits day-to-day prediction

* Climate predictability comes from slow processes (esp. ocean
and land)

* Climate is what influences the weather we get



Weather vs. climate
in the atmosphere

500-mb geopotential
height™ maps, 12 hours
apart

Note how fronts (“short
wave troughs”; dashed
lines) move, while climate

pattern (“long wave”) is
fixed
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Daily vs. “climate” forecast sKill

Forecast skill
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Forecast: predict the long-waves (climate) that steer the short-waves (weather)



Teleconnections: the alphabet

of climate

Teleconnections
represent planetary
wave-like climate
anomalies

Figure: “one-point
correlation maps” of
monthly-averaged
wintertime 500 mb
geopotential heights

“Pacific North-America (PNA)”

“North Atlantic Oscillation (NAO)”




El Nifo-Southern Oscillation (ENSO) forces a teleconnection
emanating from Tropical Pacific to encircle the globe: impacts
climate and weather worldwide
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Pacific Decadal Oscillation (PDO) PDO Time Seies
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ENSO and PDO
climate impacts

Note that these
correlations are still not
that high, and this is for
Sseasonal averages

And ENSO is the most
predictable climate signal! 2

NPI = “North Pacific Index”
=  Aleutian low (sea
level pressure)
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Climate is a statistical description of weather

Central Park, NY, Jan daily Tmax (°F)
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Number of occurrences

Use this to determine probabilities of different max temperatures



Climate forecast: changing the odds of weather

Miami FL, Jan-Mar daily Tmax (°F)
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We can’t make just one climate forecast

* We're trying to predict a small change in signal compared to
a large amount of “noise” (internal weather variability)

* We're trying to predict a change in a distribution
* So we need to make many forecasts, called an “ensemble”



But now...

* We make many forecasts, but only one of them will actually occur
* (At best: models are imperfect)

* This leaves us with a problem of predictability, based on
* How big is the signal we are trying to predict?
* How much noise is there?

* Even if our model is perfect, there is still irreducible uncertainty
due to internal variability



Uncertainty in seasonal El Niflo/La Nifia forecasts

La Nifla forecast plumes for the
recent event (2020/21)

Shows forecast uncertainty due to:

* Model
 Initial (atmospheric) conditions

In general, “best” forecast is the
ensemble mean of all forecasts,
but (if this model was perfect) all
of these plumes are equally likely

Amplitude of surface ocean temperature anomaly

La Nifia forecasts (all models, ensemble members): starting July 2020

NMME scaled Nino3.4, IC=20200
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Predictions and projections

Decadal
predictions

Initial value
problem
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To make a decadal forecast, we need

* Large ensemble using different atmospheric initial conditions
* Good initialization of the ocean

* Model simulation that realistically captures climate variability
(“internally generated variability”)

* Forecasts of anthropogenic changes in atmospheric composition
(“external forcing”)

e Can’t forecast volcanic eruptions though
* Solar? Not very well but a little



Skill of decadal
prediction,

for retrospective
forecasts 1960-
2005

Predictions are averaged over “Years 2-
9”

Most skill due to trend

“Initialization” skill, reflecting natural
(“internal”) variability, is mostly from
first few years

Skill measure is “anomaly correlation”,
captures extent to which forecasts got
the anomaly sign right

Total skill Impact of initialisation
(a) Temperature (b) Temperature




Different
precipitation
trends due to
internal
variability alone

Large climate ensemble:
40 climate “forecasts”
using same anthropogenic
forcing (2010-2060) and
slightly different initial
atmosphere conditions

Summer precipitation trends (2010-2060; mmd-! per 51 years) from each
CCSM3 ensemble member, forced with the same time-evolving external
forcing of the A1B greenhouse-gas scenario. From Deser et al. (2013)



PDO/ENSO impacts on
projected (NCAR
model) hydroclimatic
changes, 2016-2035

Top: Ensemble mean trend
(externally forced change)

Soil Moisture
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Rows 2-5: Selected ensemble

members highlighting influence of
PDO/ENSO like variability

positive PDO/ENSO: #7, #20
negative PDO/ENSO: #10, #105

Units: °C for temperature, % change
for precipitation and soil moisture.




Uncertainty in drought trends is potentially quite large

PDSI trend in CESM-LE (1950-2069)

Substantial uncertainty in long-
term (120-yr!) drying trend
between different ensemble
members

Using Palmer Drought Severity Index

(PDSI) as proxy for soil moisture (e.g.,
surface dryness /wetness); brown
means drier

Another problem: coupled models
have trouble getting Pacific SST
anomaly evolution right
(ENSO/PDO)

/ 20yrs



Sources of near-term forecast uncertainty

* “Internal” (natural weather/climate) variability
 Scenario (emissions, other “external forcing”) uncertainty
* Model error (model simulations of the above will differ)



Other sources of
uncertainty (Hawkins
and Sutton

Suggests that relative
importance of sources of
uncertainty varies due to

1) forecast lead time
2) region (size)

[My opinion is that they
underestimate impact of internal
variability and model error,
especially for precipitation]

a Global, decadal mean surface air temperature b British Isles, decadal mean surface air temperature
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Fic. 4. The relative importance of each source of uncertainty in decadal mean surface temperature projec-
tions is shown by the fractional uncertainty (the 90% confidence level divided by the mean prediction) for (a)
the global mean, relative to the warming from the 1971-2000 mean, and (b) the British Isles mean, relative to
the warming from the 1971-2000 mean. The importance of model uncertainty is clearly visible for all policy-
relevant timescales. Internal variability grows in importance for the smaller region. Scenario uncertainty
only becomes important at multidecadal lead times. The dashed lines in (a) indicate reductions in internal
variability, and hence total uncertainty, that may be possible through proper initialization of the predictions
through assimilation of ocean observations (Smith et al. 2007). The fraction of total variance in decadal mean
surface air temperature predictions explained by the three components of total uncertainty is shown for (c) a
global mean and (d) a British Isles mean. Green regions represent scenario uncertainty, blue regions represent
model uncertainty, and orange regions represent the internal variability component. As the size of the region
is reduced, the relative importance of internal variability increases.



Regional sources of
uncertainty
Hawkins and
Sutton

Similar to previous slide
but gives more of a
regional picture

Internal variability Model uncertainty Scenario uncertainty

1st decade

4th decade

9th decade

0 10 20 30 40 50 60 70 80 920 [%]

FiG. 6. Maps of the sources of uncertainty for decadal mean surface temperature for various lead times give
information on where any reduction in uncertainty will have the most benefit. The columns show the total
variance explained by (left) internal variability, (middle) model uncertainty, and (right) scenario uncertainty
for predictions of the (top) first, (middle) fourth, and (bottom) ninth decade. It should be noted that (i) even
on regional scales, the uncertainty due to internal variability is only a significant component for lead times up
to a decade or two, (ii) the largest differences between models occur at high latitudes where climate feedbacks
are particularly important, and (iii) even by the end of the century, the emissions scenario is less important
than model uncertainty for the high latitudes but dominates in the tropics.



Discussion guestions

* How might adaptation policy based on near-term climate forecasts
deal with uncertainty?

* Consider that the impact of forecast uncertainty could depend on:
* forecast variables (e.g., max and min temperature, precipitation)
* regions (e.g., southwest U.S. vs. Great Plains)
* seasons
* forecast lead times (e.g., 5, 10, 20 yrs, or longer)



Discussion guestions

* How might this uncertainty affect the politics of formulating a
response (either prevention or adaptation) to anthropogenic change?
Should it? Why or why not?



Homework question

Temperature

Precipitation Soil Moisture
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* Produce a communication strategy | ,
for the pictured climate forecast e Sac Juc e ur
ensemble covering the next 20 = >
years for the U.S. [Recall that the |
top row is the ensemble mean.]

* Consider how different audiences
(policymakers, general public,
land/water managers) may respond,
especially to a discussion of N
uncertainty.
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Extra slides



Histogram of Nifno3 (eastern equatorial Pacific) sea surface temperature anomalies

HadISST Nino3, 1891-2000
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Figure 1| Range of future climate outcomes. a, December-January-February (DJF) temperature trends during 2005-2060. Top panel shows the average
of the 40 model runs (all values are statistically significantly different from zero at the 5% confidence level); middle and bottom panels show the model



