Lecture 6 - Photolysis

CHEM/ATOC 5151

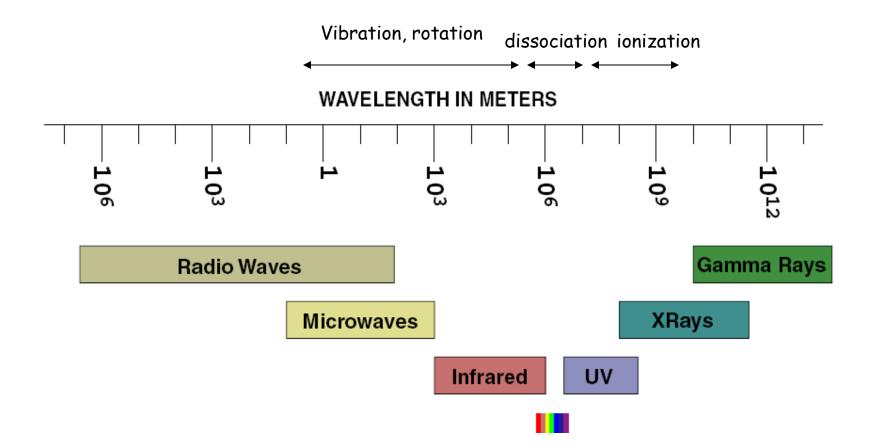
What is photolysis?

 Unimolecular decomposition process initiated by absorption of a photon

•
$$A + h_V \rightarrow B + C$$

Treat like any other reaction:
- Rate = J[A]

Components of "J"


- Absorption spectrum of molecule
- Available light to interact with molecule
- Quantum yield of reactant \rightarrow products
 - Φ = # molecules dissociated/# photons absorbed

Photon interactions with molecules

 $A + h_V \rightarrow A^*$ $A^* \rightarrow A + h_V$ $A^* \rightarrow B + C$ $A^* \rightarrow A^+ + e^ A^* + M \rightarrow A + M$

excitation fluorescence photodissociation photoionization quenching

Electromagnetic Spectrum

What wavelengths matter?

Amount of energy needed to break a bond

 $\underline{\text{Example}}: O_2 + hv \rightarrow O + O$ $\Delta H_{r\times n} = 119.14 \text{ kcal mol}^{-1} = 8.28 \times 10^{-19} \text{ J molec}^{-1}$

Recall that E = $hv = hc/\lambda$

So, $\lambda = hc/E = (6.626 \times 10^{-34} \text{ J s})(3 \times 10^{10} \text{ cm s}^{-1})$ 8.28 × 10⁻¹⁹ J

 $\lambda = 2.4 \times 10^{-7} \text{ m} = 240 \text{ nm}$

What wavelengths matter? <u>Example</u>: $O_3 + hv \rightarrow O_2 + O$

 ΔH_{rxn} = 25.5 kcal mol⁻¹ = 1.77 x 10 ⁻¹⁹ J molec⁻¹ λ = 1123 nm (near infrared)

Thermodynamics provides a "first cut" to determine products for a given wavelength, but really need to look at the spectroscopic parameters to determine if photolysis will occur.

The "rules"

Most photolytic processes are based on an electronic transition

- AE between the electronic states determines the photon energy required
- Intensity of the transition depends on the details of the two states - electronic transition moment
- Selection rules determine whether a transition is allowed.

Term Symbols - Atoms

Shorthand to describe electronic state

 γX orbital angular momentum (L) Spin angular momentum (2s + 1), where each unpaired electron gives $\frac{1}{2}$

Term Symbols

Example - the oxygen atom

O has 8 electrons: 1s²2s²2p⁴

Refer to drawings on board...

Ground state oxygen is O(³P), whereas the most common excited state is O(¹D). They differ in energy by almost 44 kcal mol⁻¹.

Term Symbols - Molecules

$$(2s+1)\Lambda refsym$$

 Λ is orbital angular momentum (Σ , Π , Δ , ...) *ref* is reflection through the plane of the atoms

(+, even, - odd)

sym is the symmetry of the wavefunction reflected through the center of the molecule

(g, even; u, odd)

Term Symbols - Molecules

Example - the oxygen molecule

Ground state oxygen (referred to as X) is $O_2({}^3\Sigma_g{}^-)$, whereas the most common excited state (a) is $O_2({}^1\Delta_g)$. They differ in energy by almost 22.5 kcal mol⁻¹.

The second excited state (b) is $O_2(^{1}\Sigma_{g}^{+})$, which is 37.5 kcal mol⁻¹ above the ground state

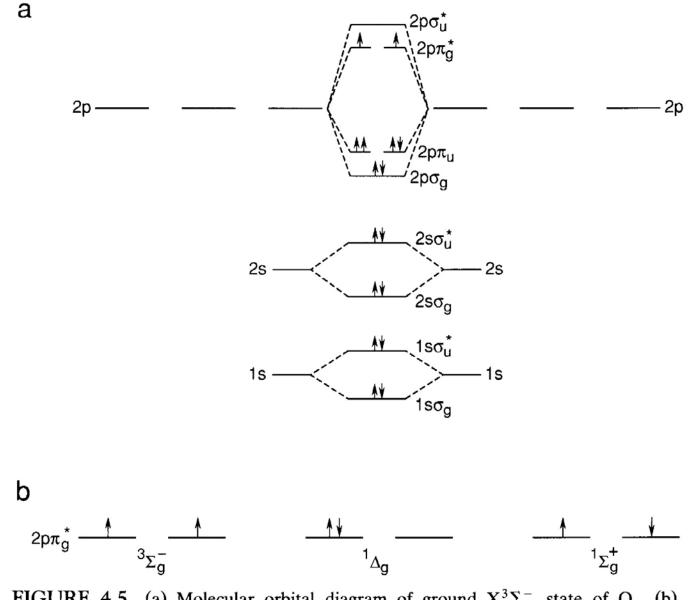


FIGURE 4.5 (a) Molecular orbital diagram of ground $X^3\Sigma_g^-$ state of O₂. (b) Comparison of highest occupied $2p\pi_g^*$ MO for the ground state, $X^3\Sigma_g^-$, and the electronically excited $a^1\Delta_g$ and $b^1\Sigma_g^+$ states.

Selection Rules

Selection rules tell us something about the probability that a transition will occur.

For atoms: $\Delta S = 0$, $\Delta L = \pm 1$

$$O(^{3}P) \rightarrow O(^{1}D)$$

S=1 S=0
L=1 L=2

"spin forbidden" - low probability, long lifetime

Selection Rules

For molecules: $\Delta S = 0$, $\Delta \Lambda = \pm 1$, $g \rightarrow u$, $+ \rightarrow +$

TABLE 3.1Allowed^a Electronic Transitions of
Diatomic Molecules Having Light Nuclei^b

Homonuclear diatomic (equal nuclear charge)	Heteronuclear diatomic (unequal nuclear charge)
$\begin{array}{l} \Sigma_{g}^{+} \leftrightarrow \Sigma_{u}^{+} \\ \Sigma_{g}^{-} \leftrightarrow \Sigma_{u}^{-} \end{array}$	$\begin{array}{c} \Sigma^+ \leftrightarrow \Sigma^+ \\ \Sigma^- \leftrightarrow \Sigma^- \end{array}$
$ \begin{split} \Pi_{g}^{g} &\leftrightarrow \Sigma_{u}^{+}, \Pi_{u} \leftrightarrow \Sigma_{g}^{+} \\ \Pi_{g} &\leftrightarrow \Sigma_{u}^{-}, \Pi_{u} \leftrightarrow \Sigma_{g}^{-} \end{split} $	$\Pi \leftrightarrow \Sigma^+ \\ \Pi \leftrightarrow \Sigma^-$
$\Pi_{g}^{s} \leftrightarrow \Pi_{u}^{u} \qquad \qquad$	$\Pi \leftrightarrow \Pi \\ \Pi \leftrightarrow \Delta \\ \Delta \leftrightarrow \Delta$

^{*a*} Presuming that the rule $\Delta S = 0$ is obeyed.

^b Source: Herzberg (1950), p. 243.

Selection Rules

- If all conditions are met,
 - Large transition moment
 - Large absorption cross section
 - Short lifetime
- If all conditions are not met,
 - "forbidden"
 - Can occur, but transition moment is small and lifetime is long.

Potential Energy Surfaces

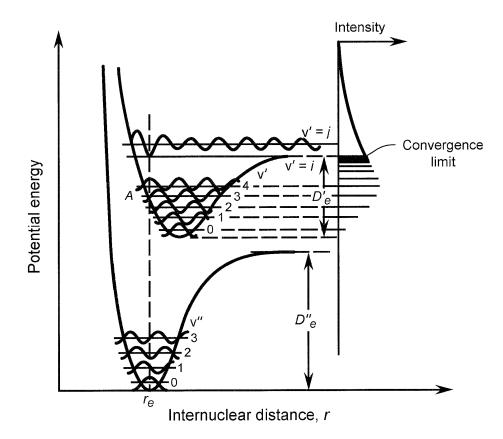


FIGURE 3.6 Potential energy curves for the ground state and an electronically excited state of a hypothetical diatomic molecule. Right-hand side shows relative intensities expected for absorption bands (from Calvert and Pitts, 1966).

Vertical Transitions - BrO

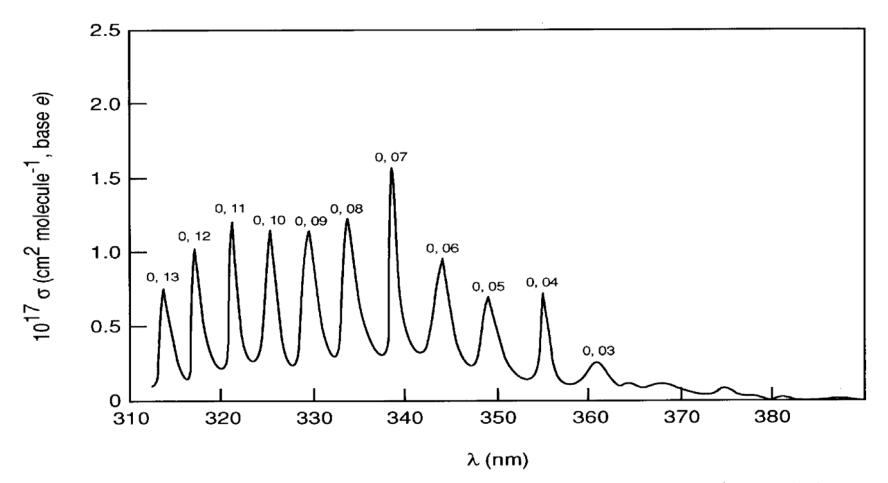


FIGURE 4.36 Absorption spectrum of BrO at room temperature (adapted from Wahner et al., 1988).

Potential Energy Surfaces

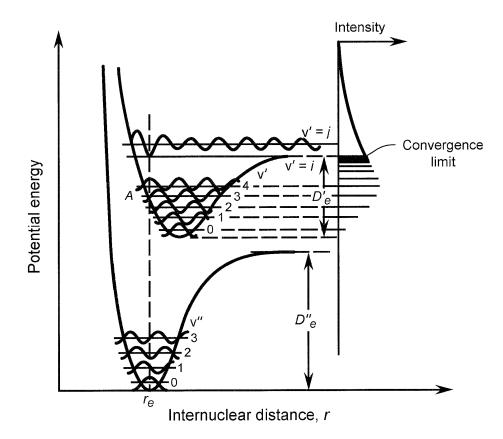
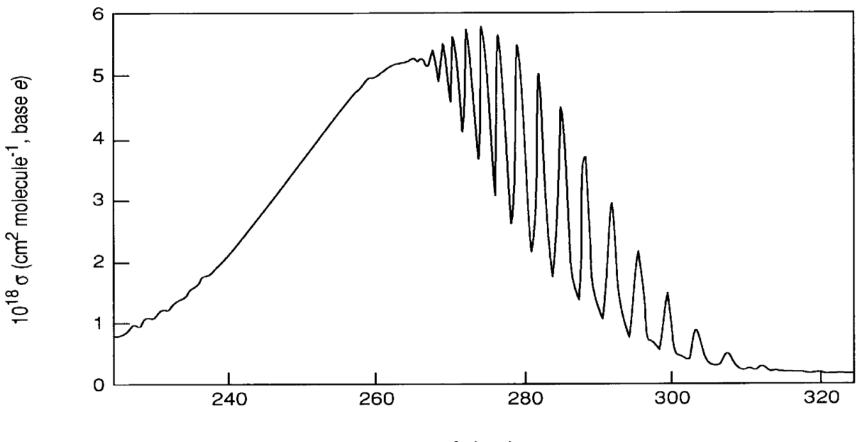



FIGURE 3.6 Potential energy curves for the ground state and an electronically excited state of a hypothetical diatomic molecule. Right-hand side shows relative intensities expected for absorption bands (from Calvert and Pitts, 1966).

Continuum plus bands: ClO

λ (nm)

FIGURE 4.35 Absorption spectrum of ClO (adapted from DeMore et al., 1997).

Repulsive surfaces

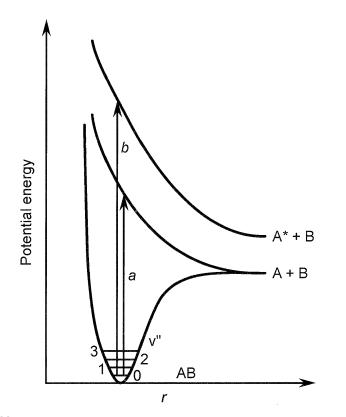


FIGURE 3.7 Potential energy curves for a hypothetical diatomic molecule showing electronic transitions to two repulsive excited states having no minima. A* is an electronically excited atom.

Repulsive surfaces

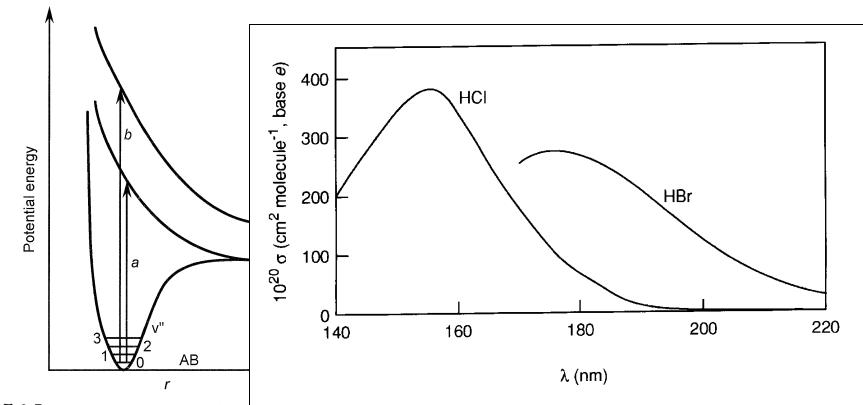
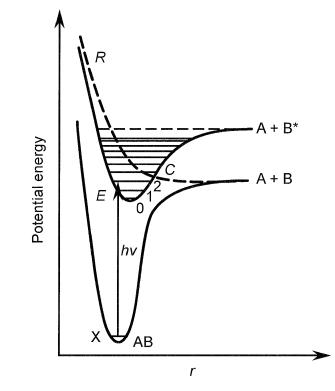



FIGURE 3.7 Potential energy curves for a molecule showing electronic transitions to states having no minima. A* is an electronical **FIGURE 4.33** Absorption spectra of HCl and HBr at room temperature (based on data in DeMore *et al.*, 1997, and Huebert and Martin, 1968).

Predissociative surfaces

FIGURE 3.8 Potential energy curves for the ground state and two electronically excited states in a hypothetical diatomic molecule. Predissociation may occur when the molecule is excited into higher vibrational levels of the state E and crosses over to repulsive state R at the point C (from Okabe, 1978).

Predissociative surfaces

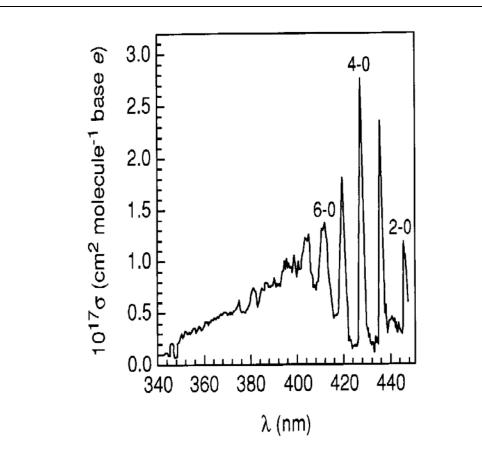
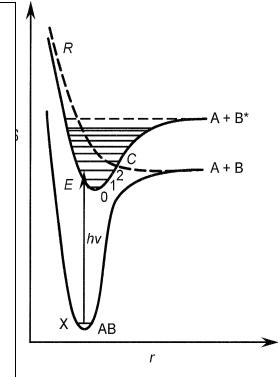



FIGURE 4.37 Absorption spectrum of IO at room temperature (adapted from Laszlo *et al.*, 1995).

8 Potential energy curves for the ground state and two excited states in a hypothetical diatomic molecule. In may occur when the molecule is excited into higher vels of the state E and crosses over to repulsive state R C (from Okabe, 1978).

A final example –
$$O_2$$

 $O(^{3}P) + O(^{3}P) \quad \lambda < 242 \text{ nm}$
 $O_2(^{3}\Sigma_g^{-}) + hv \rightarrow$
 $O(^{3}P) + O(^{1}D) \quad \lambda < 175 \text{ nm}$

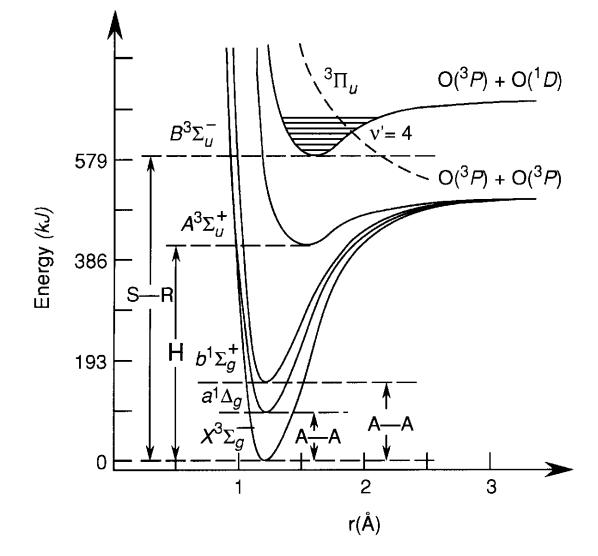


FIGURE 4.1 Potential energy curves for ground and first four excited states of O_2 . S-R = Schumann-Runge system, H = Herzberg continuum, A-A = atmospheric bands (adapted from Gaydon, 1968).

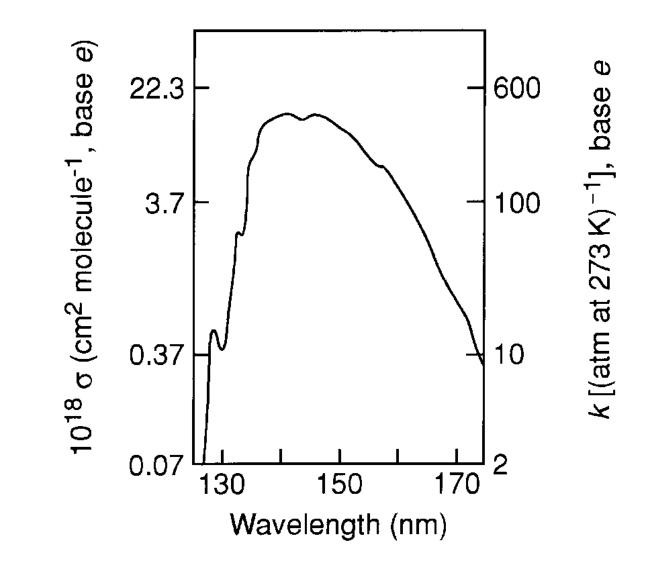
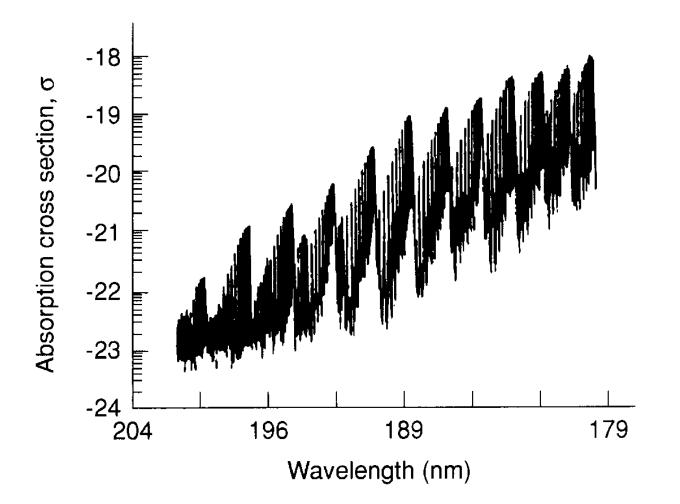
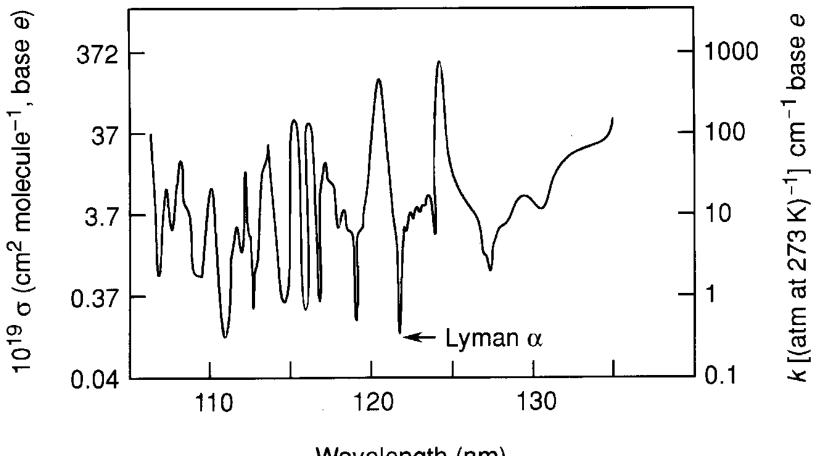




FIGURE 4.2 Absorption coefficients for O_2 in the Schumann-Runge continuum. Note log scale. (Adapted from Inn, 1955.)

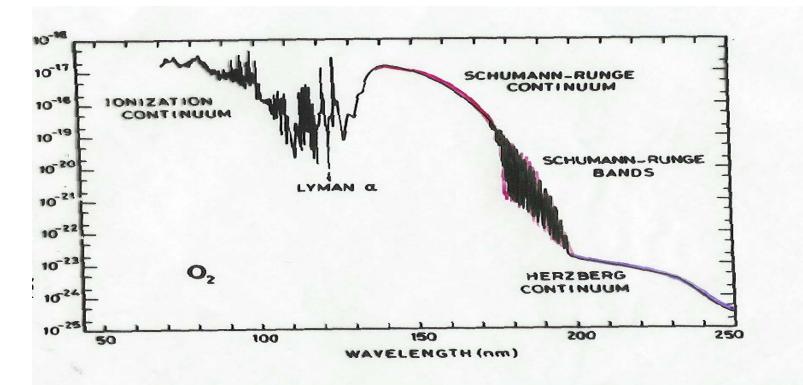


FIGURE 4.3 Semilogarithmic plot (base 10) of measured absorption coefficients in terms of the absorption cross section, σ (cm² molecule⁻¹), base *e*, for O₂ at 300 K in the 179.3- to 201.5-nm region. The structure seen for $\sigma > 10^{-22}$ cm² molecule⁻¹ is real; at smaller cross sections, some noise is present (adapted from Yoshino *et al.*, 1992).

Wavelength (nm)

FIGURE 4.4 Absorption coefficients of O_2 in the 105- to 130-nm region. The O_2 absorption line corresponding to the Lyman α line of the H atom is shown by the arrow. Note the log scale: Absorption coefficient k on right is for units of [atm at 273 K]⁻¹ cm⁻¹. (Adapted from Inn, 1955.)

26. Spectral distribution of the absorption cross section of molecular ox-