Lecture 7 — Photolysis, part 2

ATOC/CHEM 5151



Photolysis, review

 Recall that there are three components
we need to consider:

ne molecule’s absorption cross-section (o)
ne guantum yield (P)
ne number of photons present (F)

W N
H o



Quantum Yield

# molecules photolyzed/# photons absorbed

Why isn’t this simply one or zero?

Note: Must be measured; very hard to
calculate.



Quantum vyield, example 1
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FIGURE 4.9 Some measurements of the quantum yields for pro-
duction of O(*D) in the photolysis of O; at 298 K.



Quantum yield, Example 2a

TABLE 4.10 Calculated Wavelengths (nm) for
NO, Photolysis Below Which the Fragments Shown

Can Be Produced®?®
Oxygen atoms
NO ’p Ip IS
X411 397.8 243.9 169.7
A%t 144.2 117.4 97

R — - ——— —

“ From Okabe (1978).
bAssuming no contribution from internal energy of the

molecule.



Quantum yield, example 2b
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FIGURE 4.12 Quantum yields for NO production in the photoly-
sis of NO, at 298 K. Calculated quantum yields due to internal
energy (dotted line), the calculated dissociation due to collision
(dashed line), and the sum of these two calculations (solid line) are
also shown (adapted from Roehl er al., 1994).



Beer-Lambert Law

e Simple model to
guantify absorption of

light
* | =1, exp(-n{o) k @
< E
| 10
(P (Py)
n = number of absorbers
(cm)
{ = pathlength (cm) /
o = absorption cross-section ]

(CmZ molec-l) FIGURE 3.11 Schematic diagram of experimental approach to

the Beer-Lambert law.



An example: ozone
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FIGURE 4.7 UV absorption of O; at room temperature in the Hartley and Huggins
bands. At the longer wavelengths, each curve has been expanded by the factor shown.
(Adapted from Daumont ef al., 1989.)



Ozone example, part 2

Ozone is a particularly important absorber of

UV radiation. Let’s look at A = 250 nm where o =
1.13 x 1018 cm? molec? (at 298K)

| have an ozone instrument with a path length of 30 cm and
a light source at 250 nm. There is 50 ppb of ozone
outside. How much absorption will there be? [Note that
density is about 2.5 x 101° molec cm3].



Column ozone

What matters in the atmosphere is the column
amount of the absorber of interest.

Arxea Covered by
Columm

All the Ozone over a certain
area is compressed down to
0°C and 1 atm pressure.

It forms aslab 3mm thick,
corresponding, to 300 DU,



Column Ozone, part 2

Given the ozone column amount of 300 DU, how
much radiation at A = 250 nm makes it to the
surface?



Solar Flux
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FIGURE 3.12 Solar flux outside the atmosphere and at sea level, respectively. The emission of
a blackbody at 6000 K is also shown for comparison. The species responsible for light absorption in

the various regions (O5, H,0, etc.) are also shown (from Howard et al., 1960).



Removal of solar radiation
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FIGURE 3.13 Approximate regions of maximum light absorption of solar
radiation in the atmosphere by various atomic and molecular species as a function of
altitude and wavelength with the sun overhead (from Friedman, 1960).



Calculating J

J = [,Fo®dA

o=0(A\T)
=]\ T)
F = F(A, 2 lat, albedo, Nga, N,, aerosol)

\ altitude
columns

Actinic Flux



Components of Radiation Field
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FIGURE 3.16 Different sources of radiation striking a volume of gas in the atmosphere.
These sources are direction radiation from the sun, radiation scattered by gases and particles,
and radiation reflected from the earth’s surface.



Variation of Actinic Flux with Altitude
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FIGURE 3.32 Calculated actinic fluxes as a function of altitude
for a solar zenith angle of 30° and a surface albedo of 0.3. (From
DeMore et al., 1997.)



How to calculate actinic flux

F, = F, exp[-2,(oN;)] =
F.. eXp[-(003Nost 002Np,)]

This calculation must be done over the
wavelength interval of importance for the
molecule of interest.



Example: HO, -»> OH + O

A (nm) |a(O,) 0(03) |F, Foorm | OHO,) |J)
230 2.55x11.75x|558x|7.7x [245x|1.9 X
10 (1017 (1013 (104 1018|1013
240 (.78 x|2.7/75x|6.57x|3.4 1.35x(4.6 X
10-24 10-17 1013 10-18 10-18
250 -- 3.50x[6.55x|0 6.0x |0
10-17 1013 10-19




Example: HO, -»> OH + O

The entire wavelength range of interest
extends from 190 — 250 nm.

If we did the same calculation for all
wavelength bins:

Joia = £xJ, = 5.2 X 107 51



Sun Angle
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FIGURE 3.14 Definition of solar zenith angle 6 at a point on the
earth’s surface.



Variation of Solar Zenith Angle
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FIGURE 3.22 Effect of latitude on solar zenith angle. On the
scale of true solar time, also called apparent solar time and apparent
local solar time, the sun crosses the meridian at noon. The latitudes
and seasons represented are as follows: I, 20°N latitude, summer
solstice; II, 35°N latitude, summer solstice; III, 50°N latitude, summer
solstice; IV, 20°N latitude, winter solstice; V, 35°N latitude, winter
solstice; VI, 50°N latitude, winter solstice (from Leighton, 1961).
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FIGURE 3.23 Relation between solar zenith angle and time of
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Actinic Flux vs. Wavelength
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FIGURE 3.21 Calculated actinic flux centered on the indicated
wavelengths at the earth’s surface using best estimate albedos as a
function of solar zenith angle (from Madronich, 1998).



Light attenuation by scattering

To make a completely correct calculation of
J, need to account for scattering, both by
gas molecules and by aerosols.

Generally we use “optical depth”, 1, instead
of column amounts:

| =1,€e™
Note that t = 1 means /I, = 0.37



Scattering components

T = Taps T TRay part

Rayleigh scattering for air,
0 ~ 4 x 10-28/A* cm? molect

Scattering by particles is complex; we can't
do justice here — depends on size and
phase.



Attenuation components
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FIGURE 3.15 Attenuation coefficients () for light scattering
(Rayleigh scattering) and absorption (ozone absorption) by gases and
for scattering and scattering plus absorption (aerosol extinction) by
particles [from Peterson.(1976) and Demerjian et al. (1980)].



