Reaction Cycles , Steady State, and Chapman Chemistry, Part 2

- Chapman Chemistry, Odd Oxygen
- Prediction vs. Observations
- Need for catalysts

$$
\begin{aligned}
\text { rate } & =\mathrm{k}_{1}\left[\mathrm{O}_{2}\right][\mathrm{h} v]=\mathrm{J}_{\mathrm{O} 2}\left[\mathrm{O}_{2}\right] \\
\text { rate2 } & =\mathrm{k}_{2}[\mathrm{O}]\left[\mathrm{O}_{2}\right][\mathrm{M}] \\
\text { rate3 } & =\mathrm{J}_{\mathrm{O} 3}\left[\mathrm{O}_{3}\right] \\
\text { rate4 } & =\mathrm{k}_{4}[\mathrm{O}]\left[\mathrm{O}_{3}\right]
\end{aligned}
$$

Back to our equations in a bit more detail (also, see Problem 15)

$$
\begin{aligned}
& \frac{d[O]}{d t}=2 J_{1}\left[O_{2}\right]-k_{2}[O]\left[O_{2}\right][M]+J_{3}\left[O_{3}\right]-k_{4}[O]\left[O_{3}\right] \\
& \frac{d\left[O_{3}\right]}{d t}=k_{2}[O]\left[O_{2}\right][M]-J_{3}\left[O_{3}\right]-k_{4}[O]\left[O_{3}\right]
\end{aligned}
$$

$$
\begin{aligned}
\text { rate } & =\mathrm{k}_{1}\left[\mathrm{O}_{2}\right][\mathrm{h} v]=\mathrm{J}_{\mathrm{O} 2}\left[\mathrm{O}_{2}\right] \\
\text { rate2 } & =\mathrm{k}_{2}[\mathrm{O}]\left[\mathrm{O}_{2}\right][\mathrm{M}] \\
\text { rate3 } & =\mathrm{J}_{\mathrm{O} 3}\left[\mathrm{O}_{3}\right] \\
\text { rate4 } & =\mathrm{k}_{4}[\mathrm{O}]\left[\mathrm{O}_{3}\right]
\end{aligned}
$$

First, we added O and O_{3} (odd oxygen)

$$
\frac{d[O]}{d t}+\frac{d\left[O_{3}\right]}{d t}=2 \mathrm{~J}_{O 2}\left[O_{2}\right]-2 k_{4}[O]\left[O_{3}\right]
$$

We get a similar result assuming that O_{2} is in steady state - the math is harder
(Skip this slide if you don't care about the math!)

$$
\begin{aligned}
& \frac{d\left[O_{2}\right]}{d t}=-J_{O 2}\left[O_{2}\right]-k_{2}[O]\left[O_{2}\right][M]+J_{O 3}\left[O_{3}\right]+2 k_{4}[O]\left[O_{3}\right] \\
& =-2 J_{O 2}\left[O_{2}\right]+\left(J_{O 2}\left[O_{2}\right]-k_{2}[O]\left[O_{2}\right][M]+J_{O 3}\left[O_{3}\right]\right)+2 k_{4}[O]\left[O_{3}\right] \\
& =-2 J_{O 2}\left[O_{2}\right]+\frac{d\left([O]-\left[O_{3}\right]\right)}{d t}+2 k_{4}[O]\left[O_{3}\right]
\end{aligned}
$$

So, at steady state, both $\mathrm{d}\left[\mathrm{O}_{2}\right] / \mathrm{dt}$ and the $\mathrm{d}\left([\mathrm{O}]-\left[\mathrm{O}_{3}\right]\right) \mathrm{dt}$ terms will be zero. So that the following is true:

$$
\mathrm{J}_{\mathrm{O} 2}\left[\mathrm{O}_{2}\right]=\mathrm{k}_{4}[\mathrm{O}]\left[\mathrm{O}_{3}\right]
$$

$$
\begin{aligned}
& \frac{d\left[O_{2}\right]}{d t}=-J_{O_{2}}\left[O_{2}\right]-k_{2}[O]\left[O_{2}\right][M]+J_{O 3}\left[O_{3}\right]+2 k_{4}[O]\left[O_{3}\right] \\
& =-2 J_{O_{2}}\left[O_{2}\right]+\left(J_{O 2}\left[O_{2}\right]-k_{2}[O]\left[O_{2}\right][M]+J_{O 3}\left[O_{3}\right]\right)+2 k_{4}[O]\left[O_{3}\right] \\
& =-2 J_{O_{2}}\left[O_{2}\right]+\frac{d\left([O]-\left[O_{3}\right]\right)}{d t}+2 k_{4}[O]\left[O_{3}\right]
\end{aligned}
$$

This is just adding $\mathrm{J}_{\mathrm{O} 2}\left[\mathrm{O}_{2}\right]-\mathrm{J}_{\mathrm{O} 2}\left[\mathrm{O}_{2}\right]=0$

You get a similar result assuming that O_{2} is in steady state - the math is harder. Skip this slide if you don't care about the math!

$$
\begin{aligned}
& \frac{d\left[O_{2}\right]}{d t}=-J_{O_{2}}\left[O_{2}\right]-k_{2}[O]\left[O_{2}\right][M]+J_{O_{3}}\left[O_{3}\right]+2 k_{4}[O]\left[O_{3}\right] \\
& =-2 J_{O_{2}}\left[O_{2}\right]+\left(J_{O_{2}}\left[O_{2}\right]-k_{2}[O]\left[O_{2}\right][M]+J_{O_{3}}\left[O_{3}\right]\right)+2 k_{4}[O]\left[O_{3}\right] \\
& =-2 J_{O_{2}}\left[O_{2}\right]+\frac{d\left([O]-\left[O_{3}\right]\right)}{2 d t}+2 k_{4}[O]\left[O_{3}\right] \\
& \frac{d\left([O]-\left[O_{3}\right]\right)}{2 d t}=\frac{1}{2}\left(2 J_{O_{2}}\left[O_{2}\right]-k_{2}[O]\left[O_{2}\right][M]+J_{O_{3}}\left[O_{3}\right]-k_{4}[O]\left[O_{3}\right]\right) \\
& -\frac{1}{2}\left(k_{2}[O]\left[O_{2}\right][M]-J_{O 3}\left[O_{3}\right]-k_{4}[O]\left[O_{3}\right]\right) \\
& =J_{O_{2}}\left[O_{2}\right]-k_{2}[O]\left[O_{2}\right][M]+J_{O_{3}}\left[O_{3}\right]
\end{aligned}
$$

$$
\frac{d\left[O_{x}\right]}{d t}=2 J_{O 2}\left[O_{2}\right]-2 k_{4}[O]\left[O_{3}\right]
$$

This is like a cycle in a cycle!

Let's assume that O and O_{3} are in steady state.

$$
\mathrm{k}_{2}[\mathrm{O}]\left[\mathrm{O}_{2}\right][\mathrm{M}]=\mathrm{J}_{\mathrm{O} 3}\left[\mathrm{O}_{3}\right]
$$

We already know that $\mathrm{J}_{\mathrm{O} 2}\left[\mathrm{O}_{2}\right]=\mathrm{k}_{4}[\mathrm{O}]\left[\mathrm{O}_{3}\right]$. Let's eliminate [O].

$$
[O]=\frac{J_{O 2}\left[O_{2}\right]}{k_{4}\left[O_{3}\right]}
$$

$$
\begin{gathered}
{\left[O_{3}\right]^{2}=\frac{J_{O 2} k_{2}\left[O_{2}\right]^{2}[M]}{J_{O 3} k_{4}}} \\
{\left[O_{3}\right]=0.21\left(\frac{J_{O 2}}{J_{O 3}}\right)^{\frac{1}{2}}\left(\frac{k_{2}}{k_{4}}\right)^{\frac{1}{2}}[M]^{\frac{3}{2}}}
\end{gathered}
$$

Where we have used $\left[\mathrm{O}_{2}\right]=0.21[\mathrm{M}]$

$$
\left[O_{3}\right]^{2}=\frac{J_{O 2} k_{2}\left[O_{2}\right]^{2}[M]}{J_{O 3} k_{4}} \begin{aligned}
& \text { Note - these are the } \\
& \text { reactions that make } \\
& \text { ozone from } \mathrm{O}_{2}
\end{aligned}
$$

Where we have used $\left[\mathrm{O}_{2}\right]=0.21[\mathrm{M}]$

We now see a formal mathematical equation that defines the layer of ozone.

At 30 km :

- $\mathrm{J}_{\mathrm{O} 2}=10^{-11} \mathrm{~s}^{-1}$
- $\mathrm{J}_{\mathrm{O} 3}=5 \times 10^{-4} \mathrm{~s}^{-1}$

At 250 K

- $\mathrm{k}_{2}=9 \times 10^{-34} \mathrm{~cm}^{6}$ molecule s^{-1}
- $\mathrm{k}_{4}=2 \times 10^{-15} \mathrm{~cm}^{3}$ molecule s^{-1}

So at $30 \mathrm{~km}, \quad\left[\mathrm{O}_{3}\right] \sim(0.21) \times\left(9.5 \times 10^{-14}\right)[\mathrm{M}]^{3 / 2}$
Recall that we can get $[\mathrm{M}]$ from P and T (and P we can get from hydrostatic balance). At $30 \mathrm{~km},[\mathrm{M}] \sim 4 \times 10^{17}$

$$
\text { So }\left[\mathrm{O}_{3}\right] \sim 5 \times 10^{12}
$$

(so the mixing ratio of ozone is about 13 ppm)
We note that this is a bit on the high side - measurements show about half this

Chapman chemistry (in steady state)

$$
\begin{gathered}
\begin{array}{c}
\text { Slow and exactly } \\
\text { balance }
\end{array}
\end{gathered}\left[\begin{array}{l}
\mathrm{O}_{2}+h v \rightarrow \mathrm{O}+\mathrm{O} \\
\mathrm{O}+\mathrm{O}_{2}+\mathrm{M} \rightarrow \mathrm{O}_{3}+\mathrm{M} \\
\mathrm{O}_{3}+h v \rightarrow \mathrm{O}_{2}+\mathrm{O} \\
\mathrm{O}_{3}+\mathrm{O} \rightarrow \mathrm{O}_{2}+\mathrm{O}_{2}
\end{array}\right\} \text { Fast and approx. balance }
$$

How does this compare to observations? Chapman mechanism predicts more ozone than what is observed!

FIGURE 12.5 Model-calculated ozone vertical profiles for a Chapman or O_{x} model, with only $\mathrm{O}_{2}, \mathrm{O}$, and O_{3} as reactive species and the reference atmosphere chosen to be typical of 1960 conditions (adapted from Kinnison et al., 1988).

We saw above that steady state ozone was determined by the ratio of production to loss, and that production (in the stratosphere, at least) is determined by a process that is dependent only on the abundance of O_{2}, which is relatively constant over time, and solar energy, which doesn't vary that significantly. So the only explanation for the overprediction of ozone by Chapman theory is that there must be additional losses. These will be due to catalysts.

